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LLMs and Security

• LLMs used for a variety of tasks


• Writing


• Research


• Programming


• What else?


• Generate slides (such as this presentation!)


• What are security implications?



LLMs: A Brief History  
From Rules to Reasoning 



Rule-based NLP (Pre-1990s)

• Systems were explicitly programmed with linguistic rules


• Examples: ELIZA, SHRDLU


• Pros: Transparent, interpretable


• Cons: Brittle, didn’t scale well to real-world languages



Basic Machine Learning (1990s-2010s)

• Shift to statistical NLP


• Models learned from labeled data


• Examples: Naive Bayes, decision trees, logistic regression, CRFs


• Enabled tasks like spam detection, part-of-speech tagging



Deep Learning Era (2012–Present)

• Neural networks outperform traditional models


• Key breakthrough: word vectors + deep architectures


• CNNs and RNNs applied to text


• Big milestone: AlexNet (image domain), followed by LSTMs for language



Embeddings and Representation Learning

• Word2Vec (2013): learned vector representations of words


• GloVe, fastText followed


• Words mapped to high-dimensional space: similar words close together


• Limitations: static, context-independent



From GenAI to Reasoning

• GPT-3, ChatGPT, Claude, Gemini: fluent, generative capabilities


• Emergence of few-shot and zero-shot abilities


• Growing focus on chain-of-thought, tool use, planning


• Challenge: hallucinations, reasoning limitations (Examples?)



How LLMs Work



Transformer Architecture (High-Level)

• Introduced in 'Attention Is All You Need' (2017)


• Core idea: self-attention mechanism


• Processes all tokens in parallel, unlike RNNs


• Enables scalability and context-aware generation



Core Components: Self-Attention and Encoding

• Self-Attention: computes weighted relevance between all token pairs


• Tokenization: breaks text into subwords or tokens (e.g., byte-pair encoding)


• Positional Encoding: adds order info since attention is permutation-invariant



Decoder-Only vs Encoder-Decoder Models

• Decoder-only (GPT-style): optimized for text generation (left-to-right)


• Encoder-decoder (T5-style): used for translation, summarization, etc.


• Encoder-only (BERT-style): bidirectional context, good for classification



Training LLMs

• Objective: predict the next token given prior context


• Pretrained on massive web-scale corpora (code, StackOverflow, Wikipedia, 
etc.)


• Includes potentially insecure and biased data



Fine-Tuning and RLHF

• Supervised Fine-Tuning: curated prompts + answers


• RLHF (Reinforcement Learning from Human Feedback): reward models guide 
output quality


• Tradeoffs: aligns behavior with user preferences, but introduces new failure 
modes



LLM Capabilities



What LLMs Do Well: Code Completion

• Predictive code completion in IDEs


• Useful for boilerplate code and repetitive patterns


• Accelerates developer workflow



What LLMs Do Well: Pattern Matching

• Excellent at recognizing and repeating patterns


• Learns common idioms from training data


• Great for documentation or syntax examples



What LLMs Do Well: Reasoning (Sort of)

• Performs some reasoning in zeroand few-shot settings


• Chain-of-thought prompts improve performance


• Still limited compared to human logic



Limitations: Reasoning and Logic

• Struggles with tasks requiring logical rigor


• Prone to fallacies or inconsistent steps


• Poor handling of edge cases



Limitations: Planning and Execution

• Can’t plan across multiple steps or sessions


• Memory and context are shallow


• No true understanding of task goals



Limitations: Hallucinations and Confidence

• Confidently generates false information


• Mimics tone and style without verifying truth


• Dangerous in critical domains like law or medicine



Why LLMs 'Sound Right'

• Trained to predict likely sequences, not true ones


• Optimized for fluency, not accuracy


• Illusion of understanding due to polished output



LLMs and Code



Code Generation vs. Comprehension

• Generation: producing code snippets


• Comprehension: understanding and explaining code


• LLMs excel at one but struggle with the other



Security Risks: Vulnerable Code Patterns

• Examples: unsafe function use, hardcoded keys


• Often repeats bad practices found in public code


• Lack of risk awareness



Security Risks: Insecure Training Data

• GitHub data includes bugs and CVEs


• Models learn from both good and bad examples


• Need for curated training and fine-tuning



Why 'It Compiles' Isn’t Enough

• Compilable code can still be exploitable


• No security testing or static analysis in LLM output


• Developers may over-trust suggestions



LLM Attack Surface



Prompt Injection Basics

• User input alters model behavior via crafted prompts


• Example: override system instructions


• Exploits model’s inability to distinguish intent



Jailbreaking LLMs

• Circumvents safety filters or alignment layers


• “DAN” and similar prompts to bypass content moderation


• Real-world attacks are frequent and evolving



Why Prompt Attacks Work

• Models treat input as pure context


• No real boundary between instruction and user content


• Exploitable via clever phrasing or injections



Training Data Poisoning

• Backdoors inserted via public code repositories


• Poisoned samples influence model behavior


• Can be subtle and persistent



The Model Supply Chain

• Like traditional software supply chains


• Vulnerable to upstream poisoning or manipulation


• Hard to audit or trace influence in large models



Why Attribution Matters

• Plagiarism, misinformation, and malware attribution


• Need to know what text was generated by LLMs


• Crucial for trust and accountability



Watermarking LLM Outputs

• Hidden signals embedded in generated text


• Can reveal if content came from a specific model


• Not yet standardized or widely adopted



Limits of Watermarking

• Can be stripped or defeated by paraphrasing


• Not effective in adversarial settings


• Raises privacy and forensic challenges



Red Teaming for LLMs

• Simulated adversarial testing


• Helps find vulnerabilities and jailbreak paths


• Often relies on human creativity and domain expertise



Toward Safer LLMs

• Formal evaluations and benchmarks


• Alignment techniques and continuous monitoring


• Interdisciplinary challenge: AI, UX, security, ethics


