
Nikita Borisov, Spring 2025

LLMs
Advanced Computer Security
CS563 / ECE522

LLMs and Security

• LLMs used for a variety of tasks

• Writing

• Research

• Programming

• What else?

• Generate slides (such as this presentation!)

• What are security implications?

LLMs: A Brief History
From Rules to Reasoning

Rule-based NLP (Pre-1990s)

• Systems were explicitly programmed with linguistic rules

• Examples: ELIZA, SHRDLU

• Pros: Transparent, interpretable

• Cons: Brittle, didn’t scale well to real-world languages

Basic Machine Learning (1990s-2010s)

• Shift to statistical NLP

• Models learned from labeled data

• Examples: Naive Bayes, decision trees, logistic regression, CRFs

• Enabled tasks like spam detection, part-of-speech tagging

Deep Learning Era (2012–Present)

• Neural networks outperform traditional models

• Key breakthrough: word vectors + deep architectures

• CNNs and RNNs applied to text

• Big milestone: AlexNet (image domain), followed by LSTMs for language

Embeddings and Representation Learning

• Word2Vec (2013): learned vector representations of words

• GloVe, fastText followed

• Words mapped to high-dimensional space: similar words close together

• Limitations: static, context-independent

From GenAI to Reasoning

• GPT-3, ChatGPT, Claude, Gemini: fluent, generative capabilities

• Emergence of few-shot and zero-shot abilities

• Growing focus on chain-of-thought, tool use, planning

• Challenge: hallucinations, reasoning limitations (Examples?)

How LLMs Work

Transformer Architecture (High-Level)

• Introduced in 'Attention Is All You Need' (2017)

• Core idea: self-attention mechanism

• Processes all tokens in parallel, unlike RNNs

• Enables scalability and context-aware generation

Core Components: Self-Attention and Encoding

• Self-Attention: computes weighted relevance between all token pairs

• Tokenization: breaks text into subwords or tokens (e.g., byte-pair encoding)

• Positional Encoding: adds order info since attention is permutation-invariant

Decoder-Only vs Encoder-Decoder Models

• Decoder-only (GPT-style): optimized for text generation (left-to-right)

• Encoder-decoder (T5-style): used for translation, summarization, etc.

• Encoder-only (BERT-style): bidirectional context, good for classification

Training LLMs

• Objective: predict the next token given prior context

• Pretrained on massive web-scale corpora (code, StackOverflow, Wikipedia,
etc.)

• Includes potentially insecure and biased data

Fine-Tuning and RLHF

• Supervised Fine-Tuning: curated prompts + answers

• RLHF (Reinforcement Learning from Human Feedback): reward models guide
output quality

• Tradeoffs: aligns behavior with user preferences, but introduces new failure
modes

LLM Capabilities

What LLMs Do Well: Code Completion

• Predictive code completion in IDEs

• Useful for boilerplate code and repetitive patterns

• Accelerates developer workflow

What LLMs Do Well: Pattern Matching

• Excellent at recognizing and repeating patterns

• Learns common idioms from training data

• Great for documentation or syntax examples

What LLMs Do Well: Reasoning (Sort of)

• Performs some reasoning in zeroand few-shot settings

• Chain-of-thought prompts improve performance

• Still limited compared to human logic

Limitations: Reasoning and Logic

• Struggles with tasks requiring logical rigor

• Prone to fallacies or inconsistent steps

• Poor handling of edge cases

Limitations: Planning and Execution

• Can’t plan across multiple steps or sessions

• Memory and context are shallow

• No true understanding of task goals

Limitations: Hallucinations and Confidence

• Confidently generates false information

• Mimics tone and style without verifying truth

• Dangerous in critical domains like law or medicine

Why LLMs 'Sound Right'

• Trained to predict likely sequences, not true ones

• Optimized for fluency, not accuracy

• Illusion of understanding due to polished output

LLMs and Code

Code Generation vs. Comprehension

• Generation: producing code snippets

• Comprehension: understanding and explaining code

• LLMs excel at one but struggle with the other

Security Risks: Vulnerable Code Patterns

• Examples: unsafe function use, hardcoded keys

• Often repeats bad practices found in public code

• Lack of risk awareness

Security Risks: Insecure Training Data

• GitHub data includes bugs and CVEs

• Models learn from both good and bad examples

• Need for curated training and fine-tuning

Why 'It Compiles' Isn’t Enough

• Compilable code can still be exploitable

• No security testing or static analysis in LLM output

• Developers may over-trust suggestions

LLM Attack Surface

Prompt Injection Basics

• User input alters model behavior via crafted prompts

• Example: override system instructions

• Exploits model’s inability to distinguish intent

Jailbreaking LLMs

• Circumvents safety filters or alignment layers

• “DAN” and similar prompts to bypass content moderation

• Real-world attacks are frequent and evolving

Why Prompt Attacks Work

• Models treat input as pure context

• No real boundary between instruction and user content

• Exploitable via clever phrasing or injections

Training Data Poisoning

• Backdoors inserted via public code repositories

• Poisoned samples influence model behavior

• Can be subtle and persistent

The Model Supply Chain

• Like traditional software supply chains

• Vulnerable to upstream poisoning or manipulation

• Hard to audit or trace influence in large models

Why Attribution Matters

• Plagiarism, misinformation, and malware attribution

• Need to know what text was generated by LLMs

• Crucial for trust and accountability

Watermarking LLM Outputs

• Hidden signals embedded in generated text

• Can reveal if content came from a specific model

• Not yet standardized or widely adopted

Limits of Watermarking

• Can be stripped or defeated by paraphrasing

• Not effective in adversarial settings

• Raises privacy and forensic challenges

Red Teaming for LLMs

• Simulated adversarial testing

• Helps find vulnerabilities and jailbreak paths

• Often relies on human creativity and domain expertise

Toward Safer LLMs

• Formal evaluations and benchmarks

• Alignment techniques and continuous monitoring

• Interdisciplinary challenge: AI, UX, security, ethics

