We Really Need to Talk

About Session Tickets:
A Large-Scale Analysis of
Cryptographic Dangers

with TLS Session Tickets

Sven Hebrok, Simon Nachtigall, Marcel Maehren, Nurullah Erinola,

Robert Merget, Juraj Somorovsky, Jorg Schwenk

Presenter: Jacob Stolker

Key Takeaways

® [LS session tickets enhance performance, but can be vulnerable for several reasons
O Lack of adherence to cryptography best practices
O Poor maintenance and configuration of TLS servers

® [xtensive scans can reveal vulnerabilities in TLS implementations

® A large humber of AWS instances had some vulnerabilities with TLS security
O ~1.9% of Tranco top 100k hosts had critical vulnerabilities

® Used to establish a client/server connection

TLS Handshake

® Resumption handshake allows faster reconnection

Client
ClientHello

+Empty Ticket Extension

Server Hello
+Empty Ticket Extension

ClientKeyExchange

ChangeCipherSpec

Finished g
NewSessionTicket
ChangeCipherSpec
Finished

Standard TLS 1.2 handshake

Client Server

ClientHello
+Ticket Extension

Server Hello
+Empty Ticket Extension

NewSessionTicket
ChangeCipherSpec
) Finished
ChangeCipherSpec
Finished

Standard TLS 1.2 resumption handshake

® Used to establish a client/server connection

TLS Handshake

® Resumption handshake allows faster reconnection

Client
ClientHello

+Empty Ticket Extension

Server Hello
+Empty Ticket Extension

ClientKeyExchange

ChangeCipherSpec

Finished g
NewSessionTicket
ChangeCipherSpec
Finished

Standard TLS 1.2 handshake

Client Server

Clieiiii||l

Server Hello
+Empty Ticket Extension

NewSessionTicket
ChangeCipherSpec
) Finished
ChangeCipherSpec
Finished

Standard TLS 1.2 resumption handshake

TLS Session Tickets

® An encrypted and authenticated version of a TLS connection state

O+ other parameters

® Stored entirely by the client

O no separate TLS server database required

® Allows resumption of connection

O With half the time and 4% the normal cpu load

mac input

decryption input

decryption input

 unauthenticated prefix

e.g. key_name

iv

len

block 1

block 2

. enc_state :

block n— 1

block n

mac

MAC input start

Session ticket format

IV offset

e et
ciphertext
offset

MAC input end

Session Ticket Encryption Key (STEK)

® All session tickets are encrypted with STEK, which can be vulnerable
O An attacker with the STEK can
B Decrypt all session tickets (except with TLS 1.3 only future tickets)
B [mpersonate the server

Common Vulnerabilities

Unencrypted session tickets
O OpenPGP and S/MIME bugs
Weak encryption keys
O GnuTLS (all zero key)
Reused keystream
O Often occurs in counter-based cipher modes (GCM, CCM, CTR)
Cryptographic wear-out
O Probability of using the same nonce twice should be negligible
o With AES-GCM, a 12B STEK should only be used 4.2 billion times
Broken or weak authentication
Weak or outdated algorithms
Side channels (timing attacks)

Standardization

O Recommended structure of session tickets

RFC 5077
struct {
opaque
opaque
opaque
opaque
} ticket;

key_name[16];

iv[16];
encrypted_state<0..2416-1>;
mac[32];

O Recommended cryptographic standards
B Encrypted with AES-128-CBC
B Authenticated with HMAC-SHA-256

Analysis within Open-Source

Session Ticket Format

Symmetric Algorithms

Library Version magic® key_name seed® iv® len mac Encryption Authentication

RFC 5077 - 16 - 16 32 AES-128-CBC HMAC-SHA256

BoringSSL 2021¢ - 16 - 16 32 AES-128-CBC HMAC-SHA256

Botan 2.19.2 8 4 16 12 16 AES-256-GCM (GMAC)

GnuTLS 3.7.6 - 16 - 16 20 AES-256-CBC HMAC-SHAI

GoTls gol.18.3 - 16 - 16 32 AES-128-CTR HMAC-SHA256

MatrixSSL (TLS 1.2) 4.3.0 - 16 - 16 32 AES-256-CBC HMAC-SHA256

MatrixSSL (TLS 1.3) 4.3.0 - 16 - 12 16 AES-256-GCM (GMAC)
AES-128/256-GCM (GMAC)

d - -)

———— i : = = AES-128/256-CCM (CBCMAC)

OpenSSL 3.03 - 16 - 16 32 AES-256-CBC HMAC-SHA256

Rustls 0.20.6 - - - 12 16 ChaCha20 Poly1305

s2n 1.3.15 - 16 - 12 16 AES-256-GCM (GMAC)

Apache 24.54 Format of OpenSSL AES-128-CBC HMAC-SHA256

Nginx 1.22.0 Format of OpenSSL AES-128/256-CBC ~ HMAC-SHA256

OpenLiteSpeed 1.17.6 Format of BoringSSL AES-128-CBC HMAC-SHA256

a: These fields are only added by Botan.

b: IV or Nonce.

c: BoringSSL does not use releases. We analyzed the commit dddb60e from 2021-08-31.
d: mbedTLS can be configured to use different algorithms.

Analysis within Open-Source

Session Ticket Format Symmetric Algorithms
Library Version magic® key_name seed® iv® len mac Encryption Authentication
| RFC 5077 - 16 - 16 2 3 AES-128-CBC HMAC-SHA256 |
BoringSSL 2021¢ - 16 - 16 - 32 AES-128-CBC HMAC-SHA256
[Botan 2.19.2 8 4 6 12 - 16 AES-256-GCM (GMAC) |
GnuTLS 3.7.6 - 16 - 16 2 20 AES-256-CBC HMAC-SHAI
GoTls gol.18.3 - 16 - 16 B 32 AES-128-CTR HMAC-SHA256
MatrixSSL (TLS 1.2) 4.3.0 - 16 - 16 - 32 AES-256-CBC HMAC-SHA256
MatrixSSL (TLS 1.3) 4.3.0 - 16 - 12 - 16 AES-256-GCM (GMAC)
AES-128/256-GCM (GMAC)
d
———— i - : = S AES-128/256-CCM (CBCMAC)
OpenSSL 3.03 - 16 - 16 B 32 AES-256-CBC HMAC-SHA256
Rustls 0.20.6 - - - 12 - 16 ChaCha20 Poly1305
s2n 1.3.15 - 16 - 12 - 16 AES-256-GCM (GMAC)
Apache 24.54 Format of OpenSSL AES-128-CBC HMAC-SHA256
Nginx 1.22.0 Format of OpenSSL AES-128/256-CBC ~ HMAC-SHA256
OpenLiteSpeed 1.17.6 Format of BoringSSL AES-128-CBC HMAC-SHA256
a: These fields are only added by Botan. c: BoringSSL does not use releases. We analyzed the commit dddb60e from 2021-08-31.

b: IV or Nonce. d: mbedTLS can be configured to use different algorithms. 10

What was scanned?

Pre-T1IM

O Preliminary tests of a portion of the T1IM
Tranco top 1M (T1IM)

O Reqularly updated list of the top 1M most popular websites
IP100k

O Random 100k IPv4 hosts that responded on port 443 (https)
IPF

O Full IPv4 address range in August 2022

Scanning Methodoloqgy

® Online testing

O Session tickets support

©)
©)

Authentication (accepts modified tickets)
Padding oracle attacks (try various block sizes)

® (Offline testing

O

©)
©)
©)

Common prefixes (prefix tree of a certain depth)
Unencrypted secrets (common bytes in multiple tickets)
Reused keystream (XOR two tickets)

Weak keys (brute force with a list)

Scanning Results

® Preliminary scans revealed a large number of AWS instances with weak STEK

® \ulnerabilities are rare, but easy to detect

Statistics Offline Analysis Online Analysis
e Date Tested Supports Issues Resumes Unencrypted Weak Reused Missing Auth. Padding
g Versions TLS Ticket Ticket Ticket STEK Keystream Protection Oracle
[pre-TIM 2021-04 1.2 66,992 53,059 B 0 1,923 - - - |

TIM 2021-05 1.2-13 760,293 594,238 547,159 0 3 - - -
T100k 2022-04 1.0-13 71,200 58,069 55,003 0 1 0 0 0
IP100k 2022-04 1.0-13 80,972 57,493 55,969 0 0 0 0 0
IPF 2022-08 <12 39.390,365 29,621,531 - 0 189 1 - -

Scanning results

Related Works

® T[LS Scanning
O Public key exchange validation (Valenta et al.)
O Looking for Bleichenbacher vulnerability (Béck et al.)
® T[LS Key Entropy
O Vulnerability of shared RSA primes (Heninger et al.)
O Randomness low entropy in TLS (Hughes)
® Session Tickets
O 10% of Alexa top million sites keep the same STEK for >30 days (Springall et al.)
O ©65% of dll users can be tracked permanently by session tickets (Sy et al.)
O TicketBleed: Extracting 31 bytes of uninitialized memory using tickets (Valsorda)

Discussion

Does moving to TLS 1.3 help mitigate some of the vulnerabilities?

Should there be an enforced standard for session tickets?

Can MITM attacks be performed if a server’'s STEK is compromised?

As a client, can we even know if session tickets are ill-formatted or poorly
implemented?

Should older, insecure algorithms continue to be allowed?

How can we ensure keys are picked randomly and rotated consistently?

Should we just do away with session tickets entirely”? Is it not worth it the performance
gains?

Should we switch to session IDs?

Stats

Interest

Quality

16

Thank you!

